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The high complexity of aquatic ecosystems and the multiple processes involved, make the

development of ecohydraulics and eco-environmental models a challenging subject. Conventionally,

computer-based models use a mathematical formulation for the processes involved which are then

solved by numerical methods. These models are often derived based on the assumption of spatial

homogeneity and conservation principles of mass, momentum and energy. Development of these

models often demands a clear understanding of the processes involved. However, the above

assumptions are easily violated when spatial heterogeneity, individual species behaviour and local

interactions play a significant role in the system dynamics. In particular for eco-environmental systems,

knowledge on local interactions that determine the overall system behaviour is not always available.

Although the rapid advances of data-driven techniques have recently made great contributions to

water-environment related research, data on ecosystems are often quite limited, which restricts the

application of data mining methods to eco-environmental systemmodelling. In addition, no modelling

– also not black-box modelling – can be undertaken without having at least some understanding of the

basic processes and mechanisms involved. It is always advisable to start exploring any dataset using

conventional statistical techniques, as elaborated in this paper for a case study on Western Xiamen

Bay, China. Neural network trimming was then used to establish the dominant factors; it was shown

that a relatively simple ANN model was quite capable of capturing the essential features, provided the

right input parameters are chosen. Examples of integrated approaches to ecohydraulics modelling

coupling formulations with cellular automata and physical equations with fuzzy rules are presented for

applications on eutrophication modelling of Taihu Lake in China, competitive growths and colonization

of two underwater macrophytes in Lake Veluwe in The Netherlands, and forecasting of algal blooms in

the Dutch coastal waters on the North Sea. A mussel dynamics model developed for the Upper

Mississippi River in the USA demonstrates the feasibility of individual based modelling in ecosystem

dynamics. Numerical models are quite capable of simulating the abiotic aquatic environment, including

complicated fluid flow and transport mechanisms. However, when it comes to simulating the biotic

and ecosystem dynamics, the interaction of individual species with their environment, as well as the

interactions amongst species, has to be taken into account. The future of ecohydraulics and eco-

environmental modelling thus seems to lie in the integration of different paradigms and techniques,

which is the core content of the hydroinformatics discipline.
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INTRODUCTION

Given the complexity of aquatic ecosystems, computer-based

tools can become very useful for organizing knowledge and

information about a system of interest, and support the

analysis and discussion among experts in different disciplines.

Since hydroinformatics is concerned with the application of

information and communication technologies for the plan-

ning, management and conservation of the aquatic environ-

ment, the use of hydroinformatics technologies in areas of

ecohydraulics and eco-environmental applications arise quite

naturally (Mynett 2002).

Due to lacking mathematical formulations and limited

available ecological survey data, most of the conventional

ecohydraulics models are aggregated and conceptually

based. For example, in the Lotka-Volterra model, popu-

lations (May 1975) are expressed in terms of biomass instead

of the number of individual species. In the Michaelis-

Menten growth model, the Monod curve is taken as the

basic concept (Jorgensen 1994). These models are usually

developed from Newton’s 2nd law of motion and the 1st

and 2nd laws of thermodynamic, employing partial differ-

ential equations (PDFs) to describe the physical processes

(Abbott & Minns 1998). The variables in the models are

discretised approximations of continuous functions in

time and space, and the formulations strictly follow the

conservation principles of mass, momentum and energy.

Such modelling paradigms and techniques have been

playing important roles in the progress of ecological

research and are still fundamental tools (Jorgensen 1994).

However, these aggregated models mostly fail to take

into account the effects of individual species differences,

spatial heterogeneity or local interactions. These properties

sometimes are crucial to ecosystem dynamics (DeAngelis &

Gross 1992; Chen 2004). With respect to the underlying

processes, it has been widely recognised that knowledge on

the mechanisms of ecosystem dynamics are usually limited

due to the high complexity of the system and restrictions on

availability of laboratory experiments (Recknagel et al. 1994;

Recknagel 1997; Lee et al. 2003). In addition, understanding

is often qualitative rather than quantitative and difficult to

be formulated in terms of PDFs (Chen 2004).

Following the rapid progress of high performance

computing and advanced survey technologies, other

modelling paradigms and techniques are being developed

and applied to ecohydraulics modelling. These paradigms

include cellular automata, individual based and box based

schemes, fuzzy rule-based systems, evolutionary algorithms,

and machine learning methods. Compared to conventional

modelling paradigms, they are usually discrete in time,

space and model variables. They take each spatial unit or

individual species as the object to investigate the evolutions

in time and the motions in space in order to obtain the

global spatio-temporal patterns of the system. These

techniques usually employ empirical knowledge as a

reference, and discover embedded rules from the collected

data which are then used to supplement the insufficiency of

available understanding (Weiss & Indurkhya 1998; Witten

& Frank 2000).

Hydroinformatics technologies can bring innovative

approaches to ecohydraulics by integrating continuous

formulations with discrete paradigms, and physical

equations with data mining techniques. Integrated ecohy-

draulics modelling is seen to become a promising subject of

environmental Hydroinformatics. Chen et al. (2002) used

CA to simulate the competitive growths and colonization of

two underwater macrophytes and explained the resulted

ecosystem succession in Lake Veluwe, the Netherlands.

Morales-Chaves (2004) investigated the growth and spread-

ing of Zebra mussels in the Mississippi River by individual

based modelling. Salski and Sperlbaum (1991) and Chen and

Mynett (2003) successfully applied fuzzy logic to model

eutrophication, and Recknagel (1997) and Li et al. (2005)

used artificial neural networks (ANN) to forecast algal

blooms. Baptist (2005) derived the vegetation-induced

roughness formula from experiment data by genetic

programming (GP). Meanwhile, applications of chaos

theory in ecohydraulics modelling are under rapid devel-

opment as well (Jorgensen 1994).

This paper demonstrates a range of hydroinformatics

techniques for a number of aquatic ecosystem cases:

harmful algal bloom prediction for Xiamen Bay, China, by

combining data reduction techniques with artificial neural

networks; eutrophication modelling of Taihu Lake, China

by an integrated numerical-fuzzy method; algal bloom

forecasting in the Dutch coastal waters by fuzzy cellular
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automata; mussel bed evolution for the Upper Mississippi

River by individual based modelling.

It can be observed that environmental hydroinformatics

techniques can prove quite valuable for the design of river

restoration measures and the development of adaptive river

basin management procedures; combining mathematical

models with in-situ or remote sensing data acquisition

systems with graphical display techniques for effective

communication of decision can be considered indispensa-

ble tools for successful operation and decision making in

water resources management.

DOMINANT FEATURE EXTRACTION FROM DATA BY

ANN TRIMMING PROCEDURE

Harmful Algal Blooms (HABs) are quite complex phenom-

ena involving many physical, chemical and biological

processes. Due to its highly nonlinear behaviour it is

difficult to select the vital factors needed for HAB predic-

tion. The causes of algal proliferation could be numerous

and may include meteorological, hydrological, hydrodyn-

amic, biological, and ecological factors. Only if there is a

clear understanding of how these processes interact to

cause HAB occurrence, can reliable models be developed

that can identify systems and areas potentially susceptible to

bloom events. However, at present the data and infor-

mation, as well as the understanding of the mechanisms

involved are still limited. Hence it is difficult to speculate on

bloom occurrence and even more difficult to predict one.

Western Xiamen Bay is a semi-enclosed eutrophic bay

(Qi et al. 2003) with a total area of 53 km2, located in the

South Eastern coast of China. Due to pollution, many HABs

have occurred in the past (Qi et al. 2003) and mainly from

April to June. The main reasons for the occurrence of HABs in

Western Xiamen Bay are its semi-enclosed geography and

eutrophication. Since the 1980’s, the rapid development of

industry and aquaculture, as well as the increase of

population, which accelerate the eutrophication of this Bay,

has increased the frequency of HABs. Most of the pollution

loads are from the Jiulongjiang River, and the second largest

source of pollution is the industry waste load. The annual

average water temperature is 22 8C. Nitrogen and phos-

phorus are the main nutrients in this area in which

phosphorus was recorded as a limiting factor (Qi et al.

2003). Because of the subtropical climate, there are abundant

algal species, which combines different types of algae with

different favourite water temperature. Zhang (1993) reported

that 110 algal species have been identified in Western Xiamen

Bay, of which, 93 belonged to diatoms (84.5%), 13 dino-

flagellates (11.8%), 2 blue-green algae and 2 Chrysophyta

Since there are so many factors to be considered, it is very

important to first analyze whatever data and information is

available and try to extract the dominant features in order to

set up any predictive model. Conventional statistical methods

can be used for multi-variable analysis and data set reduction,

e.g. correlation analysis, principal component analysis

(PCA), independent component analysis, etc. Recently, also

data-driven models such as Artificial Neural Networks

(ANNs), have been applied for HAB prediction (e.g. Lee

et al. 2003; Maier & Dandy 1997). But in order to set up any

Multi-Layer-Perceptron ANN, it is necessary to identify (i)

what are the cause-effect relations and (ii) what are the

parameters that dominate the process. Clearly, no modelling

– not even black-box modelling – can be done without

having at least some understanding of the basic processes and

mechanisms involved. Precisely for this reason, it is always

advisable to start exploring any dataset using conventional

statistical techniques.

Statistical analysis

The input data were obtained from the HAB monitoring

program carried out in Xiamen in 2003. Data from 4 stations

(Figure 1) was collected, measuring physical, chemical and

biological parameters. Since historical surveys (Qi et al. 2003)

indicated that high Chlorophyll a (Chl-a) concentrations can

indicate algal abundance as well as the occurrence of HABs,

Chl-a was chosen as the indicator for predicting possible

occurrence of HABs one week ahead. The ratio of total

inorganic nitrogen and total inorganic phosphorous (TIN/

TIP) was seen to vary from 7 to 513 while the average TIN/

TIP ratio was about 33 (viz. much higher than the Redfield

ratio 16), which indicates that phosphorus may be the

limiting factor for HAB in this area in 2003.

A cross-correlation analysis was carried out to assess

whether there is a similar tendency at the four different

locations. In this case, stations 1, 2, and 3 were found to have a
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high correlation (Table1), but station 4 had quite a low

correlation with the other three stations. Stronger hydrodyn-

amics and different pollution sources could be the reasons for

this. Therefore, only the data from stations 1, 2 and 3 were

selected for model development and testing.

The correlation coefficients between all measured

parameters and the Chl-a concentration one week ahead

(Chl-a; t þ dt) were in general low (Table 2). Rainfall (R)

and Chl-a gave higher positive correlation with (Chl-a;

t þ dt), (dt is one week, Tran is transparency, Sal is salinity

and Irr is irradiance). Dissolved Oxygen (DO), pH, water

temperature (Tw) and Chemical Oxygen Demand (COD)

gave high correlation with Chl-a at the time of measurement

(Chl-a; t). The correlations between the nutrients and Chl-a

are relatively high and negative as well, because of the

nutrient uptake by algae.

A common statistical method for data set reduction is

Principal Component Analysis (PCA) identifying patterns in

the data. PCA has been widely applied in data reduction

(e.g. Legendre & Legendre 1998; Park & Park 2000; Chen &

Mynett 2003). Those variables, which are not contributing

much to the variance of the components, can be eliminated

from further consideration (Haan 1977). Those components

Table 1 | Correlation analysis between different stations (st1, st2, st3, st4)

Chl-a St1 St2 St3 St4 TIN St1 St2 St3 St4

St1 1 St1 1

St2 0.85 1 St2 0.86 1

St3 0.93 0.66 1 St3 0.86 0.89 1

St4 0.07 2 0.10 0.27 1 St4 0.17 0.22 0.12 1

TIP Salinity

St1 1 St1 1

St2 0.89 1 St2 0.91 1

St3 0.90 0.91 1 St3 0.97 0.92 1

St4 0.26 0.29 0.13 1 St4 0.64 0.66 0.64 1

Table 2 | Correlation analysis in the data of st1, st2, and st3

Tw WaC Tran pH Sal COD DO TIP Irr TIN R Chl-a Chl-a(t 1 dt)

Chl-a 0.43 0.63 20.62 0.79 20.31 0.79 0.91 20.66 20.12 20.53 20.08 1

Chl-a(t þ dt) 0.20 0.27 20.08 0.12 20.26 0.25 0.16 20.15 20.43 0.19 0.44 0.29 1

River mouth 

Bay 

1 2

3

4

Western

Xiamen XIAMEN

Jimei

XMU

Figure 1 | Monitoring stations.
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with higher than average variance contribution are selected

as the principal components (Weiss & Indurkhya 1998;

Chen & Mynett 2003).

Based on PCA, three components were found to give

higher than average contributions, representing almost

80% of the total loading from the whole data set.

The results from the factor loadings to these three main

components indicate that the significant factors may

include pH, DO, Chl-a, R, TIN and Tw, which were selected

as the input variables for HAB prediction.

Since phosphorus was recorded as the limiting factor in

this area (Qi et al. 2003), it could also be one of the factors

to be included in the model.

Data-driven modelling by ANNs

Data-driven modelling is nowadays quite popular because

of its capability to detect trends from observed data and to

provide fast predictions. Artificial Neural Networks (ANNs)

are one of the well-established technologies in machine

learning, and a mainstream technology for data-driven

modelling (Solomatine 2004). It was inspired by neuro-

science but did not attempt to be biologically realistic in

detail. It combines simple processing elements (called

neurons, units, or nodes), and the learning process in

ANN is typically one of changing the strength of connec-

tions (weights) between the neurons (Figure 2).

ANN is one of the commonly used data-driven models in

HAB prediction. Since it is able to map inputs to outputs even

when the relationships between them are not completely

clear (Murray 1993), ANNs have been used for input variable

sensitivity analysis (Maier & Dandy 1997) and input variable

selection by using network-trimming process (Lee et al.

2003). In this study, ANNs are used for extracting the

dominant factors that determine HAB occurrence as well as

for HAB prediction in Western Xiamen Bay. The software

used in this study is Weka, which is developed at the

University of Waikato in New Zealand.

DOMINANT FEATURE EXTRACTION BY ANN

TRIMMING PROCEDURE

Based on the results from correlation analysis and PCA, as

well as expert knowledge, 8 scenarios with different input

variables were set up (Table 3). The time step for prediction

dt was chosen to be one week. The data from stations 2 and

3 were selected for training because they contain all extreme

values of input and output variables. The data from station 1

were selected for testing. For scenario 1 (S1), the input

variables are selected based on the correlation analysis and

PCA results. The input variables for other scenarios are

selected by removing one of the input variables at a time.

This procedure represents a network trimming process,

starting from the most complicated network (S1) and

reducing towards the dominant features. The resulting

errors of training and testing for the 8 scenarios are

shown in Table 4 and Table 5. In addition, the testing

results are shown in Figure 3.

The training results of the 8 scenarios were all quite

successful in capturing the peak values of Chl-a. This proves

that MLP-ANNs have a high learning ability for the given

training data. However, in the testing results, scenarios 1 and

TIN

TIP

Tw

Rain 

Chl-a

Chl-a 
(t+dt)

Input factors Hidden nodes Output 

Figure 2 | The example of ANN structure.

Table 3 | Scenarios in using ANN for input variable sensitivity analysis

Scenarios Input variables

S1 TIN, TIP, Tw, pH, R, Chl-a, DO

S2 TIN, TIP, Tw, R, Chl-a

S3 TIP, Tw, R, Chl-a

S4 TIN, Tw, R, Chl-a

S5 TIN, TIP, R, Chl-a

S6 TIN, TIP, Tw, Chl-a

S7 TIN, TIP, Tw, R

S8 Tw, R, Chl-a
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6 gave very inaccurate results. Compared to scenario 2, the

time delay of the occurrence of the peak value in scenario 1 is

caused by pH and DO. From the correlation analysis, the

highest correlation between DO, pH and Chl-a is when the

time lag is 0. Algal photosynthesis uses CO2 and releases

oxygen, and then leads to the increase of pH and DO values.

Therefore, higher pH and DO may be the consequences of

fast algal growth. Scenario 6 does not consider rainfall and is

seen to give inaccurate results, which shows that rainfall has a

vital influence on the ANN performance in this case.

Scenario 4, 5, 7, and 8 present relatively lower errors:

this means that the input variables could be selected from

any of these four scenarios. These scenarios have four or

less input variables. Scenario 4 does not include TIP and

nevertheless it gives good result, which indicates that TIP

may not be a limiting factor in this case. S5 does not include

water temperature, and S7 does not include Chl-a at time t;

this may indicate that Tw and Chl-a may have low influence

in the network. It also shows the difficulties in input

variable selection.

Scenario 8 with only 3 input variables is seen to have the

best performance amongst the testing of all 8 scenarios. This

means on the one hand that the results do not show any

advantage of using more (than these three) environmental

factors as network inputs. A simple network already leads to

quite good result. Because of this, it means that rainfall,

water temperature and chlorophyll-a are the dominant

factors for one-week ahead prediction of the chlorophyll-a

concentration.

For the Xiamen case, the ANN results showed the

importance of rainfall in HAB prediction. This can be traced

back to historical HABs (Chen et al. 1993). Rainfall is a very

important nutrient supply carrier and indirect indicator of

nutrient enrichment, especially in the period from April to

June in Western Xiamen Bay. Also, rainfall may lead to salinity

reduction,whichmaybenefit thegrowthof somealgae species.

Table 4 | Training errors in 8 scenarios applying MLP model using Weka

S1 S2 S3 S4 S5 S6 S7 S8

Correlation coefficient 0.9837 0.9761 0.9525 0.9608 0.9234 0.873 0.849 0.9546

Mean absolute error 4.9431 8.472 9.9423 8.1605 9.6128 15.1644 9.4338 6.7367

Root mean squared error 6.579 10.386 12.4575 10.7034 11.3748 17.7621 14.8204 8.4752

Relative absolute error 28.94% 49.61% 58.22% 47.78% 56.29% 88.79% 55.24% 39.45%

Root relative squared error 23.71% 37.43% 44.90% 38.58% 41.00% 64.02% 53.42% 30.55%

Table 5 | Testing errors in 8 Scenarios applying MLP model using Weka

S1 S2 S3 S4 S5 S6 S7 S8

Correlation coefficient 0.5247 0.9367 0.8313 0.9413 0.9271 0.2189 0.8707 0.9328

Mean absolute error 11.023 11.0495 12.3508 8.4786 8.4742 20.5385 7.8753 7.032

Root mean squared error 23.25 13.1707 15.1474 10.1755 9.7253 31.688 11.2492 9.559

Relative absolute error 76.36% 76.54% 85.56% 58.73% 58.70% 142.28% 54.55% 48.71%

Root relative squared error 103% 58.33% 67.08% 45.06% 43.07% 140.33% 49.82% 42.33%
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On a more general level, data pre-processing using

statistical analysis is seen to be important not only for input

variable analysis and input dimension reduction, but also

for achieving a better understanding of the relationship

between environmental factors and HABs in this research

area. ANNs prove suitable tools for main factor selection for

HABs and HAB prediction in this case.

The results of this study clearly demonstrate the

power of applying hydroinformatics techniques to eco-

environmental data-analysis and prediction; also, it shows
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Figure 3 | The testing results using ANN in 8 scenarios.
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the importance of coupling hydrological processes, nutrient

transport processes and algae growth processes in HAB

prediction for this study area.

COMBINED NUMERICAL - FUZZY LOGIC

MODELLING OF EUTROPHICATION IN TAIHU LAKE

Taihu Lake which is situated in the Yangtze Delta is the

third biggest freshwater lake in China, and plays an

important role in the regional development. In recent

years, the lake exhibits serious problems of eutrophication,

and blue-green algae blooms are observed frequently in

most areas

To investigate the water quality changes, monitoring

stations have been installed at 79 cross sections in the

tributaries and 22 points in the lake. Besides, modelling

studies focusing on hydrodynamic and water quality

processes in Taihu Lake have been developed as well.

Although previous models were able to provide spatial

information on algae concentrations under certain wind

fields by simulating the flow patterns, they could not model

the temporal variations of the chemical and biological

substances. Moreover, integration of ecological and hydro-

dynamic processes is certainly far from established. In order

to improve understanding of the detailed eutrophication

features in Taihu Lake, a 3D water quality model was

developed which takes into account release of sediment and

unsteady meteorological forcing.

The hydrodynamics are conveniently described by the

shallow water equations under s-coordinates formulation,

while the advection-diffusion processes are described by the

well known transport equation. Nutrient variations, phyto-

plankton growth, zooplankton predation and sediment

disorption are all taken into account. A detailed description

of the 3D model can be found in Mao (2005). To numerically

solve the governing equations, all state variables are arranged

on staggered “C” grids, which defines water level z and

biochemical variables at the centre of any grid cell, and putsu

at points to the east and west of the z points, and uses v at

points to the north and south of the zpoints. An explicit finite-

difference scheme using frontal-difference in temporal

domain and central-difference in spatial domain is applied.

Some of the modelling results are presented in Figure 1 for

stations situated in Meiliang Bay where algae blooms often

originate. It can be observed that the modelled temporal

variation does not always agree well with the observations

(Figure 4).

From the model studies, wind was found to be the main

driving force for the currents within Taihu Lake, and

Meiliang Bay turns out to be most susceptible to algal blooms.

Algal blooms in Taihu Lake usually take place in summer

with duration of about two months, except in Meiliang bay

which is not so regular because of the complicated boundary

conditions. The temporal behaviour of chlorophyll a con-

centration is similar to that of solar radiation and water

temperature throughout the year, which indicates that the

model is sensitive to solar irradiance.

Given the fact that biological processes of algal blooms

are complicated and ambiguous, and that the results of the

3D numerical model and the observations have obvious

difference, a fuzzy logic (FL) model was developed as a

0 50 100 150 200 250 300 350 400
0.00

0.02

0.04

0.06

0.08

0.10

C
hl

or
op

hy
ll 

co
nc

en
tr

at
io

n 
(m

g/
L

)

Time (days)

0.00

0.02

0.04

0.06

0.08

0.10

C
hl

or
op

hy
ll 

co
nc

en
tr

at
io

n 
(m

g/
L

)

0 50 100 150 200 250 300 350 400
Time (days)

Figure 4 | Simulated (—) and measured (o) chlorophyll a concentration for Meiliang Bay.
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complementary method to compute Chlorophyll a (Chl-a)

concentrations. The model incorporates data mining tech-

niques and heuristic knowledge. Principal component

analysis (PCA) was used to identify the major abiotic

factors and to reduce dimensionality. Self organising feature

maps (SOFMs) and empirical knowledge were applied

jointly to construct membership functions and induce

inference rules (Chen & Mynett 2003). By combining rule-

based learning (Chen 2004) and by capturing empirical

knowledge in computer-based formulations, a total of 60

rules could be formulated.

The constructed FL model was tested at two sampling

sites (noted S12 and S17) (Table 6) using monthly observed

values for Chlat21 and TINt21, TIPt21 as inputs. The model

outputs as summarised in Table 1 are seen to be in general

qualitatively agreement with the field observations,

especially for the cases of high concentration. The incorrect

fuzzy predictions were mainly in the cases of low or middle

concentration Figure 5.

In order to carry out a more quantitative evaluation,

defuzzified outputs were calculated and plotted together

with the observations. The R 2 is also computed and is given

in the figures and can be considered quite reasonable for

environmental studies.

Despite its drawbacks, the model was considered accep-

table for qualitative prediction (without defuzzification).

The results are also promising even for quantitative

prediction (with defuzzification), especially if the membership

functions and inference rules are improved further by

incorporating some optimisation and sensitivity analysis

techniques.

DETERMINISTIC CELLULAR AUTOMATA FOR

MODELLING MACROPHYTE DYNAMICS

There are many systems, in particular ecosystems where the

global dynamics evolve from local interactions between

species and spatial heterogeneity of environmental factors.

In such cases, spatially-explicit biological models can be

coupled with global environmental factors to simulate

the ecosystem dynamics (Chen et al. 2002), as shown in

Figure 6. A CA based model was developed to simulate the

competition and succession of two macrophytes species in

the Lake Veluwe, the Netherlands.

Description of study area

Lake Veluwe is an isolated part of the larger Lake IJssel in

the centre of the Netherlands. The water surface is around

3300 ha, with an averaged depth of 1.4 m. It was formed by

the construction of dams in the Southeast part of Lake IJssel

in 1952 (Figure 7).

According to long-term documentation, the submerged

vegetation of the lake has experienced considerable change

after its formation, due to changes in nutrient loading. Before

1968, the water in the lake was clear, with diverse macro-

phytes vegetation. Due to discharge of wastewater from some

small cities, the lake became eutrophicated and blue-green

algae became dominant. Some restoration measures were

taken in the late 1970s, which resulted in the increase of

Table 6 | Number of cases of incorrect fuzzy prediction

Station L/M L/H M/L M/H H/L H/M
P

S12 7 0 6 2 0 2 17

S17 4 0 10 0 0 0 14

L: low; M: middle; H: high; L/M: observation low / model middle. The same is to others.
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Figure 5 | Scatter plot of measured vs. simulated Chl-a concentrations at site S12 and S17.
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Potamogeton pectinatus (P. pectinatus). The increase of P.

pectinatus provided the precondition for the return of Chara

aspera (C. aspera). After 1990, C. aspera colonised steadily

and replaced the dominance of P. pectinatus.

From an ecological point of view, it seemed that

P. pectinatus would outcompete C. aspera in the Lake

Veluwe. However, C. aspera outcompeted P. pectinatus and

replaced it gradually. Analysis of long-term observations

indicated a self-reinforcing ability of C. aspera during

eutrophication. C. aspera returned at a lower phosphorus

level (0.1 mg/l) than the level at the time of its disappear-

ance (0.3 mg/l), a phenomenon known as hysteresis; there-

fore it can be concluded that phosphorus is not a key

factor in this case. It is supposed that the competition of

dissolved inorganic carbon HCO21
3 and competition of light

are the two main factors of the succession. However, the

replacement process is still unclear, from which emerged

the demand of model simulation. Considering local com-

petition and colonisation between the two species, a

Cellular Automata approach was selected to simulate the

competition on light and HCO21
3 ; and try to explain the

essential features of the replacement process.

Model development

In this CA model, deterministic evolution rules are

developed for each of the two species, obtained from

laboratory and field experiments. The model is designed to

contain two partly interacting parallel submodels, one for P.

pectinatus and the other for C. aspera. The processes

considered in each submodel include shading, attenuation,

HCO21
3 competition, photosynthesis, respiration, morality

and spreading. A conceptual framework of the model is

presented in Figure 8, where solid lines refer to mass or

energy flow, and dash lines indicate related processes.

The local interactions between the two species are

indicated by the two-directional dashed lines, for instance

Figure 7 | The study area Lake Veluwe.
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Figure 6 | Diagram of CA model coupling with other models.
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“shading”. General aspects of the model include:

(1) germination of P. pectinatus and C. aspera from

propagules; (2) initialisation with exponential growth

rate; (3) growth and spreading; (4) production of propa-

gules. Detailed model descriptions can be found in Chen

et al. (2002).

Results and discussion

The results of the model are presented in two ways: by

visualisation of the growing and spreading patterns of the

two species in the lake (Figure 9), and by time series of

biomass density averaged over sampled cells.

As shown in Figure 9, the colonisation is from the

Northeast to the Southwest, and it is faster in longitudinal

direction than in transverse direction. Besides, the colonisa-

tion of C. aspera is faster than that of P. pectinatus. Several

simulation scenarios are carried out to test the governing

factors. The result showed that the light intensity and

HCO21
3 are two major factors to the competitive growths

of C. aspera and P. pectinatus in Lake Veluwe. Thus,

shading and competition of HCO21
3 become two important

processes. The scarcity of HCO21
3 has a great negative effect

on the growth of P. pectinatus, while it has an indirect

positive effect on the growth of C. aspera, which is

advantageous to the replacement of P. pectinatus by

C. aspera. These results are compatible with the field

observations of Marcel (1999), who explored an individual

based model to study the effects of changing environment

conditions on the dynamics between C. aspera and

P. pectinatus.

FUZZY RULE BASED CELLULAR AUTOMATA FOR

MODELLING ALGAL BLOOMS

In the CA model of Lake Veluwe, deterministic rules were

applied obtained from lab experiments and calibrated by

field data. However, often such deterministic rules are not

available because detailed mechanisms and their statistical

properties remain unclear. In such cases, rule-based

techniques can be used as an alternative. The following

case study demonstrates the application of such Rule-based

Model development

Attenuation

Irradiation 

Shading 

Underwater light 
condition

Underwater 
light

HCO
3
– 

Photosynthesis Photosynthesis 

C. aspera 
production 

P. Pectinatus 
production 

C. aspera 
biomass 

P. pectinatus 
biomass

Mortality loss  Mortality loss

Respiration loss  Respiration loss 
Spreading 

Figure 8 | Conceptual framework of the model.

Figure 9 | Germination of both species (P. pectinatus germinates earlier than C. aspera) at the left, and colonisation pattern by the end of the second year (P. pectinatus spreads

slower than C. aspera) at the right.
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Cellular Automaton (RbCA) to model algal blooming along

the Dutch coast.

Description of the study area

The study focuses on the near shore area of the Dutch coast

(Figure 10). The water depth is between 0 and 30 m, and

water temperature varies from 5 to 22 8C, while the

irradiance is between 132 , 1700 Whm-2day-1. The con-

centrations of inorganic nitrogen and phosphorus are

between 0.007 , 1.246 mg/l and 0 , 0.073 mg/l respect-

ively. The biomass concentration (in Chlorophyll a) is from

0.1 , 90.2mg/l. The discharge from the River Rhine at the

Maassluis station is between 22744 , 4649 m3/s, with a

mean of 3182 m3/s. The water is usually well mixed except

for temporary weak stratification caused by salinity.

The RCA model is to forecast algal bloom (defined by

chlorophyll a $30mg/l) based on the monitored irradiance

data and the nutrient concentrations data computed by

Delft3D-WAQ of WLjDelft Hydraulics.

Model development

A curvilinear grid (Figure 10) was used in the model and the

calculation of nitrate and phosphate concentrations was

realized through the processes library configuration tool

(PLCT) of the Delft3D-WAQ (Chen 2004). The boundary

conditions are provided by the monitored data from the

stations (Figure 10) in a way of block function, and the

initial conditions were configured through linear interp-

olation of the monitored data.

The rule-based modeldevelopedbyChen&Mynett (2004)

was introduced to predict algal biomass on the basis of the

calculated nutrient concentrations from Delft3D-WAQ. The

membership functions of nitrate and Chlorophyll a (Chl-a)

concentrations are shown in Figure 11. The other variables

includemeanwater columnirradiance,water temperatureand

ortho-phosphate concentration. Chlorophyll_a concentration

at the last time step (Chl-at21) is also used as the model input.

The time step (Dt) for the hydrodynamic computations

was set at 5 minutes, and the simulation completed a full

Figure 10 | Study area and monitoring stations in the Dutch coast and the computation grid.
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tidal cycle, which was then repeatedly used for a year.

The Dt was aggregated into 7 days in the rule-based model

for algal biomass estimation.

The CA module was directly implemented on the

curvilinear grid, which of course did not strictly follow the

original definition of CA where square grids are used.

However, this approximation can be acceptable as the

geometry of the cells does not have much variation in the

nearest neighbours. The Moore neighbourhood configur-

ation (Wolfram 1984) was applied in the CA model and the

local evolution rules were formulated in general as:

Stþ1
i;j ¼ f pStþ1

i;j ;
Xp

Stþ1
N

� �
ð1Þ

where Stþ1
i;j is the state of cell (i, j) at time step t þ 1, pStþ1

i;j

is the state of the cell (i, j) at time step t þ 1 which is

preliminarily estimated without local interactions,
PpStþ1

N is

the preliminarily estimated states of the eight neighbouring

cells, and f are local evolution rules. In this study, the state S

takes a value of the set SChl2a [ ðL;M;HÞ: Supposing
pStþ1

i;j ¼ p; the rules f are defined as:

Stþ1
i; j ¼

p if . 3 neighbours pStþ1
neighbour ¼ p

0:5ðpþ qÞ if . 3 neighbours hold pStþ1
neighbour ¼ q

8><
>:

ðp; q [ SChl2aÞ

ð2Þ

Model results

Some of the modelled results of Chlorophyll_a concen-

trations in the year 1995 are displayed in Figure 12 which

presents the output at peak-bloom period. In spatial

pattern, the algal blooms occur at the near shore area.

The reason is that the residual flow of the river Rhine

discharge is from the South to the North, following the

coastline due to the effects of Coriolis force, so the nutrient

concentrations are higher along the coast. It is also seen

that the blooms are more severe near the Noordwijk

transect and Wadden Sea area because of the discharge

from the land. By examining the observations in 1995, the

first peak bloom at station Noordwijk 10 (Figure 10)

appeared on May 3rd with the Chlorophyll_a concen-

trations of 58.2mg/l. The modelled bloom timing (28th,

April) and intensity (48mg/l) are quite close to these

observations. It remains difficult to quantitatively evaluate

the modelled spatial patterns, but this could become

possible in future when using satellite images for

comparison.

The development and application of Rule-based Cel-

lular Automata is still at the initial stage, and the advantage

of the method still requires proper evaluation. However,

preliminary research outputs indicate that cellular auto-

mata are capable of capturing enhanced patchiness

dynamics.
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INDIVIDUAL BASED MODELLING OF ECOSYSTEM

DYNAMICS

Computer simulations using knowledge-based systems are

rapidly gaining popularity in the field of ecosystem model-

ling. In particular when species interactions have to be

taken into account, local conditions and local interactions

play a dominant role.

Basically three model types can be distinguished for

modelling population dynamics: traditional models based

on differential equations (e.g. Lotka-Volterra models),

spatially explicit models such as Cellular Automata (Mynett

& Chen 2004), and individual-based models (DeAngelis &

Gross 1992). Clearly, assumptions and simplifications

inherent to each modelling paradigm determine its appli-

cability for any given problem. In general, individual-based

modelling (IBM) provides more flexibility to account for

population and environmental heterogeneity both in space

and time (Huston et al. 1988; Dunning et al. 1995). Within

the modelling spectrum IBM is often seen as the most

detailed model representation that can often be simplified

to arrive at a cellular automaton or a differential equation

model (Law & Dieckmann 1998; Cronhjort 2001). The main

limitations of the IBM approach are related to input data

requirements and computation time, though the last one

becomes less significant as computer technology advances.

A recent example of the application of individual-based

modelling is the Mussel Dynamics Model (MDM, Figure 13)

developed for analyzing the dynamic interactions between

freshwater mussels and their environment, and the inter-

action between native and invasive mussel species

(Morales-Chaves 2004; Morales et al. 2006a). The model

takes input data on river hydrodynamics, water quality, and

distribution of available fish (required for survival of the

parasitic life stage), and computes the population response to

environmental conditions based on various functional pro-

cesses. The life cycle of each species of mussels can be divided

intoas many stages asdeemed necessary togiveanappropriate

representation of the population. Expert knowledge is

integrated into a habitat suitability model that is used to

estimate mussels’ mortality. Larvae and young juveniles

dropping from the host fish are suspended in the flow and

experience hydrodynamic transport (dispersion). If habitat

conditionsdeteriorate, juvenilesandadultscanmove insearch

of more suitable habitats, though this commonly occurs at a

very slow rate. As juveniles settle in the river bed, a basic

bioenergetics model is used to compute mussels’ growth and

when adulthood is reached, reproduction is activated. The

growth of individual mussels depends on food availability and

mussels’ ordering for feeding is the mechanism used.

The core of MDM simulation is an individual-based

configuration model (DeAngelis & Gross 1992) that applies

Figure 13 | Diagram of the Mussel Dynamics Model (MDM).
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a dynamic (time dependent) approach in a spatially

distributed (two-dimensional) domain. The model has

been designed to provide flexibility for simulating mussel

dynamics in as much detail as desired: environmental

conditions can be generated by sophisticated or simple

models; any number of water quality parameters can be

considered; the population can be separated into various

species and life stages; for each life stage, the functional

processes to be simulated can be selected. All these options

make MDM a suitable tool for carrying out sensitivity

analysis and hypothesis testing, as elaborated hereafter.

Investigating the effect of flow rate on mussels’

distribution

Freshwater mussels spend most of their lives partially or

completely buried in the sediments of rivers, therefore

nearby bed currents, mean velocities, water depths, and

substrate stability may affect their distribution (Holland-

Bartels 1990; Layzer & Madison 1995; Strayer 1999a).

Different species may have different tolerances to these

parameters and the frequency and magnitude of extreme

flow events dictates which species can survive in a given

habitat (Di Maio & Corkum 1995). In addition, flow

conditions during larvae release and juvenile settlement

may limit recruitment in established mussel beds (Hardison

& Layzer 2001; Hastie et al. 2001).

In MDM the effect offlow conditions on mussel dynamics

is simulated in two steps: (i) in the habitat suitability model

hydrodynamic variables are used to determine the locations

where mussels can survive at different life stages; (ii) in the

dispersion routine a Lagrangian particle tracking mechanism

is used to determine the position of larvae and young

juveniles travelling with the flow. Simulations are made

following the mean yearly hydrograph observed in the river

reach so that flow extremes and seasonal flow variability can

be taken into account.

To test MDM predictive capabilities, a 10-km reach of

Navigation Pool 16 in the Upper Mississippi River (UMR)

was used as a case study (Morales-Chaves 2004). An initial

population of 700,000 native mussel larvae was homo-

geneously distributed in the 15 km2 domain and followed

throughout their life cycle. Suitable areas for mussel survival

(Figure 14A) were identified based on water depth, mean

Figure 14 | Application of MDM to spatial distribution analysis of freshwater mussel communities (Morales et al. 2006a): (A) Distribution of suitable habitats. (B) Trajectories of 10

juvenile mussels traveling with the flow. (C) Simulated mussel accumulations and historic mussel beds.
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velocity, substrate type, and substrate stability (Morales et al.

2006b). Dispersion of juveniles with the flow determined

the patterns of colonization of suitable habitats (Figure

14B). Those mussels settling in suitable habitats survived

and formed mussel accumulations that coincided with the

location of historic mussel beds (Figure 14C).

The sensitivity of the results to changes in flow rates is

discussed in Morales et al. (2006a, 2006b) and summarized

in Table 7. As the flow rate increases, the number of

suitable areas for mussels to inhabit decreases due to active

sediment motion at medium to high flows. The mean flow

condition greatly overestimate the real habitat suitability;

for this reason the 5% flow exceedance probability was

used which provided an appropriate estimate of the

location of flow refuges and the spatial distribution of

suitable habitats for mussel survival. The number of

individuals settling inside the boundaries of the domain

also decreases with increasing discharge. This indicates the

significant effect that high flows during the spawning

season could have on the recruitment of young individuals

in the study area.

Food competition between native and invasive species

Native freshwater mussels in the UMR are members of the

Family Unionidae and within this group food competition is

thought to be negligible (Bauer et al. 1991), although this

may depend on population density (Kat 1982). The situation

has changed drastically with the arrival of the zebra

mussels, an invasive species that smothers native mussels

and competes with them for food supplies (McMahon &

Bogan 2001). In comparison with native mussels, zebra

mussels densities are generally orders of magnitude higher

(Strayer 1999b), and filtration rates can be more than 10

times those of unionids (Strayer et al. 1999). Even at low

infestation intensities, the loss of food resources due to

zebra mussel invasion has been observed to cause a sharp

decline in the native mussel population.

MDM was used to estimate the effect of food competition

between zebra mussels and native mussels (Morales-Chaves

2004). Chlorophyll a records from the Long Term Resource

Monitoring Program (USGS 2003) were used to estimate a

base food concentration of 0.9 mg C/L. The amount of food

available for mussels feeding was computed by multiplying

the base food concentration by the volume of the cell and by a

factor ff indicating the percentage of the water column to

which mussels have access. Because zebra mussels often

smother unionids, securing first access to inhalant waters

(Strayer et al. 1999), in the simulations zebra mussels were

given priority for feeding over unionids.

First, simulations were made for unionids alone for a

long enough period to obtain a developed or stable

population (60 y for ff ¼ 100%, 142 y for ff ¼ 10%, 115 y

for ff ¼ 1%). Then zebra mussels were introduced in the

system applying a fixed upstream boundary condition of

200 larvae/L (based on measurements by USACE, personal

communication) entering the domain during every day of

the reproductive season (July to September). Because the

aim of the simulations was to investigate coexistence of

unionids and zebra mussels, only zebra mussels settling in

native mussel beds (Figure 14C) were considered.

Zebra mussel population growth (Figure 15A) was

determined by the concentration of incoming larvae, hydro-

dynamic conditions, and food availability (Morales-Chaves

2004). The base food concentration was enough to reach the

maximum population size dictated by the fix immigration

rate. But for ff ¼ 10% and ff ¼ 1% food shortage considerably

reduced the population size that was attained. After 10 y the

population size remained stable in the three scenarios and

densities varied between 25 and 300 zebra mussels/m2,

which corresponds with ranges reported by Hart et al. (2001)

for moderate to high zebra mussel infestation in an upstream

reach of the Upper Mississippi River.

In competition with native mussels, zebra mussels took

up most of the resources available causing a decline in the

native mussel population (Figure15B). For ff ¼ 100%, a

slow recovery of the native mussels occurs after the zebra

mussels population stabilizes. But for ff ¼ 10% and ff ¼ 1%

the native mussels population size drops sharply and after

Table 7 | Sensitivity of the modeling results to flow rate

Flow rate

(m3/s)

Exceedance

probability

Relative extent

of suitable areas

Relative number

of settling juveniles

566 99% 1 1

2039 35% (mean flow) 0.14 0.71

3965 5% 0.05 0.56
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45 y simulation (,one unionids life cycle) it has decreased

99%. Annual survival rates of native mussels were between

0.75 and 0.90, similar to those reported by Hart et al. (2001)

for moderate to high infestation densities. Even for the most

optimistic scenario where mussels had access to all food in

the water column (ff ¼ 100%), the population size of the

native mussels had to decrease to satisfy zebra mussels

demand. When unionids were simulated alone, population

densities varied between 2–98 mussels/m2, but after

10 y simulation with zebra mussels, the maximum density

of unionids had dropped to 17.8 mussels/m2 and some

former native mussel beds had disappeared (Mora-

les-Chaves 2004). The situation worsened for lower food

availability. The results suggest that coexistence of the two

families of species might be possible, nevertheless it must be

bear in mind that the sharp decline in native mussel

densities at low food availabilities may produce extirpation

due to unsuccessful egg fertilization (Downing et al. 1993).

In general, the relevance of food competition as a

population structuring mechanism depends on the relative

importance of mussels grazing compared to food resources

transport and availability (Strayer et al. 1999). In the past,

food availability allowed the development of rich native

mussel communities in the UMR, some of which were

extensively exploited with the button industry from 1850’s

to 1930’s (Anthony & Downing 2001). Prior to the zebra

mussel invasion, densities .100 mussels/m2 had been

observed in some areas (Whitney et al. 1997). The results

of our analysis indicate that the situation is likely to change.

If the current pattern of zebra mussel colonization

continues and the population becomes permanently estab-

lished along the UMR a significant shift on resources

allocation can be expected, as it has occurred in other

freshwater systems in North America (Ricciardi et al. 1996;

Strayer et al. 1999).

MDM as a decision support tool

MDM is a typical example of an application in the area of

environmental hydroinformatics, where knowledge and

information from various disciplines is integrated and the

application of alternative modeling paradigms is explored.

The individual-based model presented in this paper proved to

be very effective for simulating mussel population dynamics.

By integrating individual responses it was possible to observe

a range of dynamic variations at the population level,

information that was previously unavailable.

The overall agreement between simulation results and

observations indicate that the MDM model successfully

captured the essential mechanisms of mussel dynamics. The

model can be a useful tool to estimate the potential effect of

different stressors on long-term dynamics of freshwater

mussel communities and consequently improve the current

understanding of cause-effect relationships in such a complex

system. The model can be used to evaluate the potential effect

of different management practices, information that is

considered to be extremely valuable for decision makers

Figure 15 | Population growth as a function of percentage of food in the water column readily available for mussels feeding (ff). (A) Zebra mussels. (B) Native mussels infested by

zebra mussels. The food concentration was 0.9mg C algae/l and priority was given to zebra mussels over native mussels for feeding.
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since it can support the development of appropriate strategies

for conservation of natural ecosystems.

CONCLUSIONS

Although discrete paradigm and rule-based techniques are

becoming more widely applied in eco-environmental

modelling, and already demonstrates certain advantages in

some cases as shown by the examples in the paper, this does

not mean that they can take over conventional methods

that are often referred to as physically-based formulations

using partial differential equations. The key issue nowadays

is to select proper methods from a variety of available tools

depending on the problems (Mynett 2002; Chen & Ouyang

2005) dealt with. In general, the selection of a paradigm or

method depends on the research objectives, understanding

of the problem of study, and availability of data.

If knowledge on the mechanisms involved is enough

and data is limited, conceptual models can be a proper

choice. If knowledge is limited but enough data is available,

data driven model can be a right method. When only limited

data and/or limited knowledge are available, rule-based

methods taking experts experiences as the reference

can provide a suitable alternative (Duel et al. 2002; Lee

et al. 2002).

It is becoming increasingly recognised that eco-compa-

tible adaptive water management strategies can best be

developed and implemented by making use of advances in

the development of hydroinformatics tools and technol-

ogies. Evolutionary algorithms and neuro-fuzzy computing

prove extremely valuable for the design of river restoration

measures and adaptive river basin management procedures,

as well as for habitat suitability assessment. Mathematical

models in combination with data acquisition systems and

advanced graphical display techniques for effective com-

munication are becoming indispensable prerequisites for

successful water management. In the field of ecosystem

modelling, the potential of computer-based simulation

techniques in combination with expert knowledge from a

wide range of disciplines ranging from the hydro-sciences to

biological/ecological/environmental systems is gaining rec-

ognition. In fact, eco-compatible adaptive water manage-

ment strategies could greatly benefit by making use of

advances in hydroinformatics tools for ecohydraulics

modelling (Mynett 2004).
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